631 research outputs found

    Notes on Melonic O(N)q1O(N)^{q-1} Tensor Models

    Get PDF
    It has recently been demonstrated that the large N limit of a model of fermions charged under the global/gauge symmetry group O(N)q1O(N)^{q-1} agrees with the large NN limit of the SYK model. In these notes we investigate aspects of the dynamics of the O(N)q1O(N)^{q-1} theories that differ from their SYK counterparts. We argue that the spectrum of fluctuations about the finite temperature saddle point in these theories has (q1)N22(q-1)\frac{N^2}{2} new light modes in addition to the light Schwarzian mode that exists even in the SYK model, suggesting that the bulk dual description of theories differ significantly if they both exist. We also study the thermal partition function of a mass deformed version of the SYK model. At large mass we show that the effective entropy of this theory grows with energy like ElnEE \ln E (i.e. faster than Hagedorn) up to energies of order N2N^2. The canonical partition function of the model displays a deconfinement or Hawking Page type phase transition at temperatures of order 1/lnN1/\ln N. We derive these results in the large mass limit but argue that they are qualitatively robust to small corrections in J/mJ/m.Comment: 60 pages, 7 figure

    TEMPO: Efficient Multi-View Pose Estimation, Tracking, and Forecasting

    Full text link
    Existing volumetric methods for predicting 3D human pose estimation are accurate, but computationally expensive and optimized for single time-step prediction. We present TEMPO, an efficient multi-view pose estimation model that learns a robust spatiotemporal representation, improving pose accuracy while also tracking and forecasting human pose. We significantly reduce computation compared to the state-of-the-art by recurrently computing per-person 2D pose features, fusing both spatial and temporal information into a single representation. In doing so, our model is able to use spatiotemporal context to predict more accurate human poses without sacrificing efficiency. We further use this representation to track human poses over time as well as predict future poses. Finally, we demonstrate that our model is able to generalize across datasets without scene-specific fine-tuning. TEMPO achieves 10%\% better MPJPE with a 33×\times improvement in FPS compared to TesseTrack on the challenging CMU Panoptic Studio dataset.Comment: Accepted at ICCV 202

    On the Utility of Model Learning in HRI

    Get PDF
    Fundamental to robotics is the debate between model-based and model-free learning: should the robot build an explicit model of the world, or learn a policy directly? In the context of HRI, part of the world to be modeled is the human. One option is for the robot to treat the human as a black box and learn a policy for how they act directly. But it can also model the human as an agent, and rely on a “theory of mind” to guide or bias the learning (grey box). We contribute a characterization of the performance of these methods under the optimistic case of having an ideal theory of mind, as well as under different scenarios in which the assumptions behind the robot's theory of mind for the human are wrong, as they inevitably will be in practice. We find that there is a significant sample complexity advantage to theory of mind methods and that they are more robust to covariate shift, but that when enough interaction data is available, black box approaches eventually dominate

    On the Utility of Model Learning in HRI

    Get PDF
    Fundamental to robotics is the debate between model-based and model-free learning: should the robot build an explicit model of the world, or learn a policy directly? In the context of HRI, part of the world to be modeled is the human. One option is for the robot to treat the human as a black box and learn a policy for how they act directly. But it can also model the human as an agent, and rely on a “theory of mind” to guide or bias the learning (grey box). We contribute a characterization of the performance of these methods under the optimistic case of having an ideal theory of mind, as well as under different scenarios in which the assumptions behind the robot's theory of mind for the human are wrong, as they inevitably will be in practice. We find that there is a significant sample complexity advantage to theory of mind methods and that they are more robust to covariate shift, but that when enough interaction data is available, black box approaches eventually dominate

    US News and Social Media Framing around Vaping

    Get PDF
    In this paper, we investigate how vaping is framed differently (2008-2021) between US news and social media. We analyze 15,711 news articles and 1,231,379 Facebook posts about vaping to study the differences in framing between media varieties. We use word embeddings to provide two-dimensional visualizations of the semantic changes around vaping for news and for social media. We detail that news media framing of vaping shifted over time in line with emergent regulatory trends, such as; flavored vaping bans, with little discussion around vaping as a smoking cessation tool. We found that social media discussions were far more varied, with transitions toward vaping both as a public health harm and as a smoking cessation tool. Our cloze test, dynamic topic model, and question answering showed similar patterns, where social media, but not news media, characterizes vaping as combustible cigarette substitute. We use n-grams to detail that social media data first centered on vaping as a smoking cessation tool, and in 2019 moved toward narratives around vaping regulation, similar to news media frames. Overall, social media tracks the evolution of vaping as a social practice, while news media reflects more risk based concerns. A strength of our work is how the different techniques we have applied validate each other. Stakeholders may utilize our findings to intervene around the framing of vaping, and may design communications campaigns that improve the way society sees vaping, thus possibly aiding smoking cessation; and reducing youth vaping

    CMR Native T1 Mapping Allows Differentiation of Reversible Versus Irreversible Myocardial Damage in ST-Segment–Elevation Myocardial Infarction

    Get PDF
    Background—CMR T1 mapping is a quantitative imaging technique allowing the assessment of myocardial injury early after ST-segment–elevation myocardial infarction. We sought to investigate the ability of acute native T1 mapping to differentiate reversible and irreversible myocardial injury and its predictive value for left ventricular remodeling. Methods and Results—Sixty ST-segment–elevation myocardial infarction patients underwent acute and 6-month 3T CMR, including cine, T2-weighted (T2W) imaging, native shortened modified look-locker inversion recovery T1 mapping, rest first pass perfusion, and late gadolinium enhancement. T1 cutoff values for oedematous versus necrotic myocardium were identified as 1251 ms and 1400 ms, respectively, with prediction accuracy of 96.7% (95% confidence interval, 82.8% to 99.9%). Using the proposed threshold of 1400 ms, the volume of irreversibly damaged tissue was in good agreement with the 6-month late gadolinium enhancement volume (r=0.99) and correlated strongly with the log area under the curve troponin (r=0.80) and strongly with 6-month ejection fraction (r=−0.73). Acute T1 values were a strong predictor of 6-month wall thickening compared with late gadolinium enhancement. Conclusions—Acute native shortened modified look-locker inversion recovery T1 mapping differentiates reversible and irreversible myocardial injury, and it is a strong predictor of left ventricular remodeling in ST-segment–elevation myocardial infarction. A single CMR acquisition of native T1 mapping could potentially represent a fast, safe, and accurate method for early stratification of acute patients in need of more aggressive treatment. Further confirmatory studies will be needed

    Mortality Among Adults With Cancer Undergoing Chemotherapy or Immunotherapy and Infected With COVID-19

    Get PDF
    Importance: Large cohorts of patients with active cancers and COVID-19 infection are needed to provide evidence of the association of recent cancer treatment and cancer type with COVID-19 mortality. // Objective: To evaluate whether systemic anticancer treatments (SACTs), tumor subtypes, patient demographic characteristics (age and sex), and comorbidities are associated with COVID-19 mortality. // Design, Setting, and Participants: The UK Coronavirus Cancer Monitoring Project (UKCCMP) is a prospective cohort study conducted at 69 UK cancer hospitals among adult patients (≥18 years) with an active cancer and a clinical diagnosis of COVID-19. Patients registered from March 18 to August 1, 2020, were included in this analysis. // Exposures: SACT, tumor subtype, patient demographic characteristics (eg, age, sex, body mass index, race and ethnicity, smoking history), and comorbidities were investigated. // Main Outcomes and Measures: The primary end point was all-cause mortality within the primary hospitalization. // Results: Overall, 2515 of 2786 patients registered during the study period were included; 1464 (58%) were men; and the median (IQR) age was 72 (62-80) years. The mortality rate was 38% (966 patients). The data suggest an association between higher mortality in patients with hematological malignant neoplasms irrespective of recent SACT, particularly in those with acute leukemias or myelodysplastic syndrome (OR, 2.16; 95% CI, 1.30-3.60) and myeloma or plasmacytoma (OR, 1.53; 95% CI, 1.04-2.26). Lung cancer was also significantly associated with higher COVID-19–related mortality (OR, 1.58; 95% CI, 1.11-2.25). No association between higher mortality and receiving chemotherapy in the 4 weeks before COVID-19 diagnosis was observed after correcting for the crucial confounders of age, sex, and comorbidities. An association between lower mortality and receiving immunotherapy in the 4 weeks before COVID-19 diagnosis was observed (immunotherapy vs no cancer therapy: OR, 0.52; 95% CI, 0.31-0.86). // Conclusions and Relevance: The findings of this study of patients with active cancer suggest that recent SACT is not associated with inferior outcomes from COVID-19 infection. This has relevance for the care of patients with cancer requiring treatment, particularly in countries experiencing an increase in COVID-19 case numbers. Important differences in outcomes among patients with hematological and lung cancers were observed

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990-2015:a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background Healthy life expectancy (HALE) and disability-adjusted life-years (DALYs) provide summary measures of health across geographies and time that can inform assessments of epidemiological patterns and health system performance, help to prioritise investments in research and development, and monitor progress toward the Sustainable Development Goals (SDGs). We aimed to provide updated HALE and DALYs for geographies worldwide and evaluate how disease burden changes with development.Methods We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2015. We calculated DALYs by summing years of life lost (YLLs) and years of life lived with disability (YLDs) for each geography, age group, sex, and year. We estimated HALE using the Sullivan method, which draws from age-specific death rates and YLDs per capita. We then assessed how observed levels of DALYs and HALE differed from expected trends calculated with the Socio-demographic Index (SDI), a composite indicator constructed from measures of income per capita, average years of schooling, and total fertility rate.Findings Total global DALYs remained largely unchanged from 1990 to 2015, with decreases in communicable, neonatal, maternal, and nutritional (Group 1) disease DALYs off set by increased DALYs due to non-communicable diseases (NCDs). Much of this epidemiological transition was caused by changes in population growth and ageing, but it was accelerated by widespread improvements in SDI that also correlated strongly with the increasing importance of NCDs. Both total DALYs and age-standardised DALY rates due to most Group 1 causes significantly decreased by 2015, and although total burden climbed for the majority of NCDs, age-standardised DALY rates due to NCDs declined. Nonetheless, age-standardised DALY rates due to several high-burden NCDs (including osteoarthritis, drug use disorders, depression, diabetes, congenital birth defects, and skin, oral, and sense organ diseases) either increased or remained unchanged, leading to increases in their relative ranking in many geographies. From 2005 to 2015, HALE at birth increased by an average of 2.9 years (95% uncertainty interval 2.9-3.0) for men and 3.5 years (3.4-3.7) for women, while HALE at age 65 years improved by 0.85 years (0.78-0.92) and 1.2 years (1.1-1.3), respectively. Rising SDI was associated with consistently higher HALE and a somewhat smaller proportion of life spent with functional health loss; however, rising SDI was related to increases in total disability. Many countries and territories in central America and eastern sub-Saharan Africa had increasingly lower rates of disease burden than expected given their SDI. At the same time, a subset of geographies recorded a growing gap between observed and expected levels of DALYs, a trend driven mainly by rising burden due to war, interpersonal violence, and various NCDs.Interpretation Health is improving globally, but this means more populations are spending more time with functional health loss, an absolute expansion of morbidity. The proportion of life spent in ill health decreases somewhat with increasing SDI, a relative compression of morbidity, which supports continued efforts to elevate personal income, improve education, and limit fertility. Our analysis of DALYs and HALE and their relationship to SDI represents a robust framework on which to benchmark geography-specific health performance and SDG progress. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform financial and research investments, prevention efforts, health policies, and health system improvement initiatives for all countries along the development continuum. Copyright (C) The Author(s). Published by Elsevier Ltd.</p
    corecore